From the *Transactions of the Bristol and Gloucestershire Archaeological Society*

A Romano-British Shaft of Dressed Stone and the Settlement at Oldbury-on-Severn, South Gloucestershire

by J. R. L. Allen and S. J. Rippon

© The Society and the Author(s)
A Romano-British Shaft of Dressed Stone and the Settlement at Oldbury-on-Severn, South Gloucestershire

By J.R.L. ALLEN and S.J. RIPPON

Introduction

Evidence for Romano-British embanking and settlement of large tracts of the Severn Estuary Levels is rapidly increasing as the result of systematic field-walking and survey, development activities and intertidal erosion. Practically none of that evidence is structural, however, and the nature of activities at the settlements, aside from local corn-drying (Rippon 1995) and widespread iron-making (Allen and Fulford 1987), is largely conjectural. Recent work on the embanked estuarine alluvium north-west of the village of Oldbury-on-Severn, South Gloucestershire, tends to suggest that the Romano-British occupation here may have enjoyed a high status compared to communities on the Levels generally (Allen and Fulford 1992; Hume 1992). Continuing coastal erosion at Oldbury Flats has brought to light in the intertidal zone a dressed stone shaft—the main subject of this paper—which further strengthens this view.

Evidence for Romano-British activity at Oldbury-on-Severn was first described by Green and Solley (1980), who reported from the tidal foreshore at the southern end of Oldbury Flats (O.S. Nat. Grid ST 6093, 6094) a rich and diverse strew of transposed pottery, mainly of the 2nd to 4th centuries. No source for this pottery in a stratified context was reported. Allen and Fulford (1987) re-examined Green and Solley's assemblage and made new, systematic collections from the intertidal zone at Oldbury Flats. The date range of the pottery was confirmed, with a probable downward extension into the 1st century (grog-tempered and calcite-tempered fabrics). Of greater importance was the recognition that a much wider variety of occupation debris had been transposed onto the foreshore, including high-grade iron ore, iron-making slag, bones and teeth, and a range of ceramic and stone building materials. At a later stage, coastal erosion began to reveal for the first time a primary stratified context yielding Romano-British occupation debris similar to that released onto the modern shore. Investigations were resumed after an interval of a few years (Allen and Fulford 1992), during which erosion had exposed a large, silted-up palaeochannel and other features (ST 601937), most of which afforded cultural materials. In particular, on the southern bank of the palaeochannel there was a feature, at the time of the survey resembling a shelf or embayment, which yielded in great abundance a rich variety of occupation debris, including coal, charcoal, the bones and teeth of domestic animals, a quern, various iron-making slags and ores, building materials, and personal articles. The pottery assemblage was typologically more limited than the collections from the shore but, with a similar date range, again emphasized the later Roman period. Evidence was also found for some transposition of Romano-British artefacts onto the present-day foreshore from two secondary stratified contexts, the local representatives of the Rumney Formation and the Northwick Formation. These silt deposits record historical episodes of coastal erosion and mudflat-salt marsh growth in the area. The
former began to be deposited probably late in the 17th century; the latter dates from the mid 20th century.

A proposal in 1991 by Nuclear Electric plc to construct a third silt lagoon, on fields immediately to the south of the Oldbury Power Station (ST 6093, 6094) and close to Allen and Fulford's (1992) palaeochannel, led to a rapid archaeological assessment after soil-clearance by machine of a substantial area immediately inland of the seabank (Hume 1992). This investigation complemented and amplified work from the intertidal zone (Green and Solley 1980; Allen and Fulford
1987, 1992) and gave evidence of widespread Romano-British occupation of the area. The main date range of the abundant and well-preserved pottery, for example, was from the early 2nd century through to the 4th century. The second objective of this paper is a brief synthesis and assessment of the combined intertidal and land-based evidence for this occupation.

The Stone Shaft

Continuing erosion, especially of the mud cliff at the edge of the salt marsh at Oldbury Flats, has further developed the features described by Allen and Fulford (1992). Their transverse ditch TD3 (Allen and Fulford 1992, illus. 2) has begun to yield small amounts of Romano-British pottery, building materials, and bones and teeth. In particular, the feature resembling a shelf or embayment by the palaeochannel has been found to extend south-westward into a large ditch trending almost parallel with the present shoreline (Fig. 1a–b). The ditch has continued to yield a rich variety of occupation debris similar to the assemblage previously described. By October 1995, part of the surface of a large, dressed stone lying horizontally near the bottom of the ditch had become exposed at the foot of the marsh cliff on the inner edge of the foreshore. This stone—apparently a column or pillar—was later dug out from the enclosing silt, erected on the foreshore, and described and sampled in the field. The silt encasing the shaft yielded an abundance of pristine Romano-British pottery sherds, and coal and charcoal, together with occasional fragments of bone, lumps of slag and small pieces of various building stones.

The shaft (Figs. 2, 3A) has the form of a very slightly barrel-shaped, truncated cone, with dimensions that are almost exact multiples of one third of a Roman foot (i.e. four unciae). It is 0.60 m tall, 0.41 m across the base, and 0.21 m across the almost parallel top. Except for an unbroken collar 0.09–0.10 m wide at the very base, the flat top (Fig. 3B) and sides (Fig. 3C) of the shaft has been very carefully and completely dressed by pecking. The peck marks are mostly c. 15 mm apart and c. 5 mm deep. The unpecked collar (Fig. 3D) at the presumed base protrudes very slightly from the general profile and had been shaped by the removal of intersecting flakes of stone a few to several centimetres across. Less care had been taken with the much more irregular underside, on which it is presumed the shaft was intended to rest. Several large flakes had been detached, a number of which in part seemed to follow laminae in the stone; there was one large, triangular area and a much smaller, roughly circular area, which had been roughly flattened by irregular pecking.

The rock that forms the shaft is a tough, off-white, well-sorted, medium-coarse, siliceous quartz sandstone; where the pillar was exposed by erosion to the air, the surface had weathered to a very pale brown. A coarse, parallel lamination is faintly visible on the sides of the shaft, striking at a fine angle across the axis of symmetry (Figs. 2, 3A, 3C). In appearance, and especially on a freshly exposed surface, the rock is slightly porous and distinctly saccharoidal; scattered through it are millimetre-scale voids, as if either feldspar grains or, more probably, calcareous fragments had been leached out. In thin-section under the microscope, it consists predominantly of very well sorted, moderately to well rounded, simple grains of quartz, accompanied by some coarsely polycrystalline quartz. A few particles showed vermiform chlorite inclusions. Several per cent of chert-like grains are present. Some of these are true chert, with a number showing spherulitic texture, whereas others resemble siliceous lavas. No feldspar was recorded. The silica cement is patchily developed. Cementation is almost complete over small areas scattered through the rock, with only occasional grains showing crystal terminations into a few small, surviving pores. In other areas, where the porosity is larger, many grains display pyramidal crystal terminations into pores and voids. Voids are unevenly spread through the rock, but tend to follow the coarse lamination. They range from the size of the sand grains to irregular, elongated cavities.
many grain diameters in length. No firm clues as to their former contents remained. The provenance of the rock and the relation of the source to Oldbury-on-Severn are explored below.

The Romano-British Settlement

Figure 1b summarizes the geoarchaeological and archaeological findings of Green and Solley (1980), Allen and Fulford (1987, 1992), and Hume (1992) at Oldbury Flats and the immediate hinterland, in terms of the landscape as it was before the commencement of work on the silt lagoon. No attempt is made to depict the complex Flandrian geology in the area (details in Allen and Fulford 1992). The features mapped are palaeochannels, ditches, pits, structures (padstones, postholes, beam slots, stone walls), features associated with high concentrations of iron-making slag, and burials.

The distribution of tidal palaeochannels in the area can be tentatively reconstructed from unambiguous stratigraphical evidence in the intertidal zone combined with faint vegetation and flooding marks in a group of fields that had not been subject to medieval ploughing (R.A.F. air photograph 1946 CPE/UK 1825 3096; O.S. air photograph 69 058 010). A gently curved feature 30–40 m across runs WSW toward the shore, apparently meeting a deep and wide palaeochannel heading inland from the intertidal zone. A shore-parallel palaeochannel exposed on the coast may join it from the north. The air photographs show in the fields two narrower but more strongly curved features which may also be silted-up tidal channels. The palaeochannel that
Fig. 3 The Romano-British stone shaft, Oldbury-on-Severn. A: general view (spade 0.94 m tall); B: top (penknife 93 mm long); C: detail of side (penknife blade 69 mm long); D: basal collar (penknife 93 mm long).
heads inland was certainly active during the Roman period at the point where it intersects the edge of the modern salt marsh, for there it has yielded both late Iron-Age and Romano-British artefacts and occupation debris (Allen and Fulford 1992). However, if there were ever flood defence works on its banks, none has survived into the 20th century. It may be presumed that the smaller palaeochannels for which there is evidence in the fields were fully silted up by Roman times, for within their outcrop are features and structures of that date. Only one feature, however, occurs within the extensive flooding-vegetation mark identified with the main palaeo-channel. There Hume (1992) recorded large limestone blocks and what seemed to be a wall composed of at least three or four courses of sandstone slabs; much purely late Roman occupation debris was also present. In view of its axial position, the possibility cannot be excluded that this structure is part of a bridge or outfall on an inland extension of the active tidal channel.

The circumstances of Hume’s assessment gave no opportunity for detailed work, particularly stratigraphical and area excavation, but there can be little doubt that the curved to straight ditches recognized defined a system of enclosures and that many of the pits had been used for the disposal of domestic rubbish. Some of the ditches could be traced for more than 10 m and one about a metre wide was visible for 48 m. Centrally placed was an industrial area measuring c. 20 by 30 m and comprising a building and 13 large features, all rich in iron-making slag and most also rich in charcoal. An important find, in the extreme north of the area, was a cemetery containing at least six human burials. In total, the evidence on the shore and in the hinterland for settlement at Oldbury-on-Severn is spread over at least c. 20 ha (Fig. 1b).

Pottery totalling c. 80 kg (6730 sherds) was recovered by Hume from the site of the silt lagoon; the intertidal assemblages are smaller but nonetheless substantial (Green and Solley 1980; Allen and Fulford 1987, 1992). In terms of chronological range, features possessing exclusively or partly early Roman (1st- to 2nd-century) material are restricted largely to a substantial central area which, like the distribution of the prehistoric (?Neolithic) finds (Hume 1992), seems to conform to the north bank of the large palaeochannel that ranges through the fields. Two minor clusters of early Roman features and contexts occur south of the palaeochannel; there is a third cluster at the site of the cemetery in the north of the investigated area. Contexts of early date make up only about a quarter of the total contexts in the area. Features attributable to the later Roman period (3rd to 4th centuries) range beyond these areas of early occupation and are predominant (Fig. 4a–b).

Discussion

The discovery of the shaft of dressed stone (Figs. 2–3) prompts at least three questions. What was the source of the stone? What was the function of the shaft? What does the object indicate about the character of the settlement at Oldbury-on-Severn?

Sandstones of Devonian, Carboniferous and Triassic age are plentiful in the Forest of Dean and Chepstow areas to the west of the Severn Estuary and also in the Mendips, the Bristol area, and the Tortworth district north of Bristol to the east of the Severn (Kellaway and Welch 1955, 1993; Welch and Trotter 1961; Cave 1977). On the basis of hand-sliced appearance alone, but with the support of the thin-section petrography, a source in the Devonian, Triassic and Upper Carboniferous (Coal Measures) can be ruled out. The Devonian sandstones typically are pink, red or purple-red and at many levels are micaceous. A yellowish colour, vuggy texture and the presence of gypsum marks the Triassic sandstones. Those from the upper Carboniferous, although commonly quartzitic, are grey-green to reddish and commonly include coalified plant remains. The most probable source of the shaft is, therefore, one of the sandstone formations in the Lower Carboniferous—and particularly the thick Upper Cromhall Sandstone—which
outcrop most extensively in the Tytherington–Cromhall–Chipping Sodbury area to the north of Bristol and again in the Avon and Clifton gorges (Cave 1977, 55–9; Kellaway and Welch 1993, 46–61). These sandstones, interbedded with fossiliferous marine limestones, are tough, off-white to pale grey, fine to coarse-grained quartzites that include calcareous material at some horizons. Cromhall, the general type-site (where there is also a villa), lies on the nearest outcrop of the Upper Cromhall Sandstone to Oldbury-on-Severn, which is only 10 km to the north-west. A less likely source is the Quartzitic Sandstone Group (Millstone Grit), with a similar distribution to the Cromhall Sandstone. These rocks, however, lack any evidence of a calcareous
component and have very small outcrops. The generally calcareous and largely yellow, brown or reddish Drybrook Sandstone (Lower Carboniferous), exposed to the west of the Severn Estuary (Welch and Trotter 1961), is an even less likely source.

The context leaves little doubt concerning its Roman age, but what was the purpose of the shaft? Superficially it resembles the upright from a staddle, but that particular means of supporting a granary, well known in England from the 19th century, does not appear to have been employed in Roman Britain. The stone, but without a cap, may still have been used to support such a building, for classical authorities urged that granaries in moister regions should be raised above the ground (Morris 1979, 29). In her survey of raised agricultural buildings, however, Morris found only square-section pilae to be in evidence. Another possibility is that the shaft represents a hypocaust pilā, although this, too, seems unlikely. Middleton (1890, 665–6) suggests that 'in some parts of England, especially in Gloucestershire, bricks seem to have been costly, and are very sparingly used. Thus at Spoonley, and at the very fine villa at Chedworth in the same County, nearly all the pilae are made in stone'. This is clearly an exaggeration, since most pilae in Gloucestershire are made in ceramic bricks, and the majority of stone-built hypocausts comprises simple, stone-lined channels. Chedworth does have some free-standing stone pilae, however, but these are square in section and crudely worked (RCHME 1976, p. 27, pl. 25).

The shaft from Oldbury Flats seems far too carefully made to have been intended either for a merely functional agricultural building, even supposing that the object would have been easily visible, or as a hypocaust support, when it would have been permanently concealed. A more likely explanation is that the shaft represents part of a column, such as those used around verandas (cf. Middleton 1890, 656). Examples are found widely at Gloucestershire villas, including Chedworth (Scarth 1869), Spoonley (Middleton 1890, 656), and Witcombe (Lysons 1831, 183). Many of these columns have quite elaborately moulded bases and capitals, although plainer examples are known, such as the one from Colesbourne, which bears a striking resemblance to the Oldbury shaft (RCHME 1976, p. 36, pl. 27). This shaft includes no capital, however, and the elaborately worked top admits as another possibility that the stone was intended to be free-standing, on a low wall, stone gate-post, or even a cornice. What does seem clear from the high quality of its workmanship is that the Oldbury shaft was created as an architectural object to be seen.

Taken in conjunction with other shreds of evidence, the shaft begins to point toward a higher status for the settlement at Oldbury-on-Severn (Figs. 1, 4) than is typical for the Severn Estuary Levels. There could have been a building of some richness present within the settlement. A piece from a combined flue tile had been transposed onto the shore (Allen and Fulford 1987, 253), and stratified with other occupation debris in the ditch exposed near the palaeochannel were later found a fragment from a tegula, a further piece of flue tile, an ornamental roof fitting in Bath stone, and part of a bronze seal box (Allen and Fulford 1992, 109, 118). It is now clear (Hume 1992) that by the 4th century the settlement had become dispersed over a large area and was economically diverse. There was at least one substantial industrial area, for iron-making (Figs. 1, 4), and the presence of another, involving non-ferrous metals (lead, tin, bronze, brass), is suggested by an abundance of transposed debris recovered intermittally (Allen and Fulford 1992, 116–18). A possible parallel is afforded by the industrial area at the Chesters villa, on the opposite bank of the Severn (Fulford and Allen 1992).

The occupation described above is a clear example of the close association, on the Severn Estuary Levels, between Romano-British settlements and tidal channels. Equally clear cases are represented by the Romano-British sites at Manor Farm and Ham Farm on the levels at Kenn Moor in North Somerset (Rippon 1995, 1996), where palaeochannels wind as bold negative features through the little-improved fields. In this same area, the Wemberham villa stands on
the tidal alluvium directly on the right bank of the Congresbury Yeo and may have included a landing place (Scarth 1886). Although coastal erosion has long since removed all traces of the landscape, the same association can be inferred from Romano-British occupation debris transposed onto the intertidal zone at Magor Pill on the Gwent coast (Allen and Rippon 1995). Here there was almost continuous activity beside a large tidal channel from the late Iron Age to early modern times. Many other Romano-British occupations are known from the Severn Estuary Levels; these challenge the investigator to establish whether or not they too were linked to channels that afforded means of communication by water and perhaps slightly higher and drier ground.

References

Lysons, S., 1831 'Account of the remains of a Roman villa discovered in the parish of Great Whitcombe, in the County of Gloucestershire', *Archaeologia 19*, 178-83.

Middleton, J.H., 1890. 'On a Roman villa in Spoonley Wood, Glos., and on Romano-British houses generally', *Archaeologia 50*, 651-68.

